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ABSTRACT

The influence of conducting flaps on the reflection coefficient of
a ground-plane-mounted TEg, mode parallel-plate waveguide illumi-
nating a reflecting sheet is analyzed. The backscatter from the guide
is determined by use of wedge diffraction and surface integration tech -
niques. The reflection coefficient of the guide is then obtained through
an iterative procedure that describes the multiple interactions between
the guide and reflector as bouncing cylindrical waves. The optimum
flap length produces a significant reduction in the backscatter from the
guide and consequently a significant reduction in the oscillations of the

reflection coefficient.
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THE INFLUENCE OF CONDUCTING FLAPS ON
THE REFLECTION COEFFICIENT OF A PARALLEL-
PLATE WAVEGUIDE ILLUMINATING A CONDUCTING SHEET

I. INTRODUCTION

Recent advances in space exploration has given impetus to the
need for better understanding of spacecraft antenna problems. An
important phenomenon is communications blackout encountered during
reentry due to plasma formation. In order to overcome this problem,

a knowledge of the characteristics of the plasma formed around the space-
craft is necessary. A widely used technique for plasma diagnostics is a
flight measurement of antenna impedances or reflection coefficients.
Improved designs are being sought for reflectometer antennas useful

for this purpose. One approach being taken to gain insight into the be-
havior of reflectometer antennas is to analyze the aperture reflection
coefficient of a waveguide illuminating a conducting sheet which approxi-
mates a cutoff plasma. The interactions between the conducting sheet
and the ground-plane-mounted waveguide are similar to those which
occur between a cutoff plasma and the vehicle skin around the reflecto-
meter antenna. Consequently this type of analysis gives a measure of
the performance of flush mounted reflectometer antennas.

A. Statement of the Problem

The problem being treated in this report is the analysis of the
reflection coefficient of a ground-plane-mounted TEq mode parallel-
plate waveguide with flaps attached at the aperture and illuminating a
conducting sheet. The geometry of the problem is as shown in Fig. 1.

A similar problem which has been previously treated”® is the
TEM mode ground-plane-mounted guide (without flaps) illuminating a
conducting sheet. By using the wedge diffraction method the reflection
from the conducting sheet was given in terms of successive contributions
or bounces that describe the interacting waves between the waveguide
and the reflector. Each of these bounce waves was subsequently resolved
into component cylindrical waves. The reflection coefficient was then
obtained by summing these iterative contributions. For the TEM guide
without flaps, the reflection coefficients when plotted as a function of 4,
the reflector spacing, exhibited strong oscillatory behavior. In fact,
for values of d equal to an integral multiple of A/2, complete reflection,

or a unity reflection coefficient, was observed.
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Fig. 1. TE( mode parallel-plate waveguide with
flaps illuminating a conducting sheet.

In order to accurately determine the distance d of a perfectly
reflecting surface from an antenna in a ground plane, however, it is
desirable to have the reflection magnitude from the antenna be a mono-
tone function of d. The ground plane mounted TEM guide studied in
Ref. 2 is therefore unsuitable for reflectometer applications without
further modifications.

The problem considered in this report is motivated by the work of
R. Lentz’ where he experimentally observed that the reflected power
received by an absorber-backed pyramidal horn illuminating a reflecting
sheet may be made a monotone function of the distance to the reflector
by the attachment of conducting flaps to the E-plane edges of the horn.
However, the important question remaining unanswered is: can a ground
plane mounted aperture antenna achieve this monotone reception, since
the ground plane is the primary scatterer? For this case significant
multiple interactions can occur between the ground plane and reflector
so as to yield oscillatory results. The purpose of this investigation is
then to examine the effect of conducting flaps in reducing these multiple
interactions.

The method of solution for the flap guide problem is outlined below.
First, the backscatter of the guide structure with flaps is determined




for plane wave incidence by applications of wedge diffraction and surface
integration techniques. The scattered field is then observed on a plane
at a constant distance away from the guide aperture for different flap
lengths (f). The optimum flap length is that which yields the deepest

null in the scattered field since this means the lowest return from the
guide structure and hence lowest multiple interactions between the guide
and reflector. Secondly, the scattered field is resolved by superposition
to be the sum of two equivalent line source fields plus the reflected geo-
metrical optics field. Finally, the reflection coefficient is analyzed by
a multiple bounce procedure similar to that employed in Ref. 2.

B. Background

Following the method in Refs. 4 and 5, the incident field in a
TEg; mode parallel plate waveguide may be expressed in terms of plane
waves {as shown in Fig. 2) where the angle of propagation is given by

(1) Ao = sin"l M
2a

The incident modal power flow is

(2) Py = 2a Yo cos A,
where
Y, = Neo/ho

and the associated modal voltage is

Yo
(3) Vo = |2a -?_g_ cos A,

where Y, is the guide admittance for the TEp; mode. For this polari-
zation the relationship between the electric field E, ray R, diffraction

coefficient D, and modal voltage V is given by
e—j(kr+11/4) o ~Jkr v e—jkr+1‘r/4

4 E =R =D .
(4) NZTKkr Nt 2T r
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Fig. 2. TEon mode in a parallel-plate waveguide.




The diffraction at the aperture of the parallel-plate waveguide
may be treated as in Ref. 4 by summing the single and double diffraction
contributions. The guide structure-in this analysis may be approximated
by a symmetric half-plane guide when considering radiation in the on-

axis region. The singly diffracted rays from edges ! and 2 are thus given

respectively by

1
(5) Ry (g = L sin ™
m ny Ul m+0- Ao
cos - cos
n n;
- 1 -jw/2
€ ,
™ TT+9+.A.O
Co§ -— - COS
njg ny
and
-jml2
(6) Rz(")(e) = _1_ sin ™~ &7
ny n;
1 1
X -
-0- A -
cos ™ _ cos — ° cos_“_—cosufﬁ‘z
nz np nz nz

where n; = n, = 2.0.

The ray from edge 1 (or 2) which illuminates edge 2 (or 1) is given by

(7) Ry dY = RzG(l) - rM(-90°) = R4 (90°) .

The doubly diffracted rays from the two edges are given by

(8) Rl(z)(e) = RzG(I) [vp(a, 90° +0,n;) - VB(a, 270° +6,n3)],



and
Ri%0) = Rad[VB(a, 90°- 8. ny) - VB(2,270° -0,n;)]

where VB(r, ¢, n) is the wedge diffraction function employed in previous
analyses. Calculations have shown® that the field radiated by the guide
near the on-axis region may be approximated by a line source field
given by

o 6-0 (630 e-j(kr+'rr/4) o e-jkr
E =0, =R = —_— e . = =0
(9) Tl r) T ) — DT(6=0) N

where

Rp(6=0) = R{M(8=0) + Rf)(0=0) + R(*(6=0) + Rf)(=0) .

The equivalent line source with modal voltage V), which approximates
the guide radiztion is then given by

o-ilkr- m/4)

(10) ET(O, ry =V,
2Ty

A primary result used in this analysis is the response of the
TEp mode parallel-plate waveguide to an incident cylindrical wave.
This is given by the line source to waveguide coupling relationship
presented in Ref. 5 as

Yo "A- e-‘j 1T/4

=2 ————— DT(®) E',
Yg A2acos A,

(11) VvV =

where V is the modal voltage induced in the guide, E! is the incident
field at the guide aperture center, and DT(8) is the diffraction coeffici-
ent of the guide given through Eq. (9). Rewriting this relationship in
a form useful for computing the reflection coefficient I', we find

(12) F:l:cvie
Vv




where V! is the modal voltage of the line source generating the incident

field E! given by

. . _-ijkr + j /4
'\JZTrr '

and the constant C is given in terms of the on-axis ray Rp(6= 0) as

RT(ezo) e-—j 1T/4

(14) c=_M
Z2a cos Ay 2aNk

II. BACKSCATTERING OF GUIDE

WITH FLAPS

In this section the backscattering properties of the guide structure
shown in Fig. 1 are investigated as a function of flap length. Assuming
a unit amplitude plane wave incident on the guide as shown in Fig. 3,
the scattered field may be analyzed by a combination of wedge diffraction
and surface integration techniques. The scattered field is then observed
on a plane normal to the guide axis and located at a distance d' away
from the guide aperture. The flap length which gives the deepest null
in the total scattered field may then be considered optimal for minimi-
zing multiple interactions between the guide and the reflector.

The scattered field for this problem may be thought of as being
composed of the following components: (1) direct diffraction contribu-
tions or the diffracted rays from the flap edges which are not influenced
by the presence of the ground plane; (2) reflected diffraction contributions
or the diffracted rays from the flaps which reflect off the ground plane
and contribute to the total scattered field, and (3) reflected geometrical
optics contributions from the ground plane. Detailed analyses of these

components are given in the following sections.

A. Direct Diffraction Contributions

The analysis of the direct diffraction contributions from the flap
edges is analogous to that employed in previous problems J:7:8 These
contributions may be obtained by simply summing the single and double
diffraction contributions from the flap edges as shown in Fig. 4.
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scattered field from the flap edges.




The singly diffracted field at the observation point P(x, y) from
edges 1 and 2 are given, respectively, by

(15) EM = Vy(r1,9,2.0) - Vy(ry, 2n+9, 2.0)

where

rl=m

and
ay = tan~? (y/d")
and
(16) Ez(l) = VB(rz, -0, 2.0) - Vp(r,, 27-0z,2.0)
where
r, = Nd'“ + (y + a)?
and

- +a
Q, = tan i (yd'—)

The single diffraction rays which originate at one edge and illumi-
nate the opposite edge are given by

1,
17 RidY = RedV=Lsin T -
n n 11' 90° 11- 270°
cOs — - COS cos — - COS
n n

-N2 forn=2.0

Hence the doubly diffracted field from edges 1 and 2 are given,
respectively, by



-ju/a Ik [::?a - (r1+a):]
(18) El(z)z RZC;(I) [} e
N2k "[rl—*‘_;‘

r1+a r1+a

X [VB(M_,90°+az,z.o) - VB(_EL‘L, 270°+a1,z.0)]

and

_i jk |£22 . (r;+a)
(19) E‘_!(z) - RIG(1) e J w/4 e [rz+a _]
NZTk Nr,+a

x [VB(rZZa ,90°-a2,z.o) - Vg (_12_3_,270°-az,2.o)]

+a r,t+a

The total direct diffraction contribution to the scattered field may then
be expressed as

(20) Ep = EMM + £ + E{?) 4 gf?)

B. Reflected Diffraction Contributions

The diffracted rays from the edges of the flaps which reflect off
the ground plane and thus contribute to the total scattered field may be
analyzed to a first order approximation by the same ray tracing techni-
que employed in the previous section. If this method were applied the
geometry and diffraction components involved would be as shown in Fig. 5
where ERp represents the diffracted wave which emanates from edge 1,
is reflected by the ground plane, and contributes to the scattered field
at P(x,y). A similar process, of course, results from edge 2 for
y < -a. Preliminary calculations have shown that this technique would
be adequate if one were interested only in finding the scattered field for
ly >> 0. However, for the regions of interest in the problem of this
report further considerations must be given.

The reflected diffraction wave, ERD, can be seen in Fig. 5 to
actually reilluminate edge 1 as § — 0. The subsequent diffracted wave

10
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Fig. 5. Ray tracing technique for finding the reflected
diffraction contributions from the flaps.

which results cannot be adequately described by conventional wedge
diffraction techniques, which inherently assumes cylindrical wave
incidence, because the magnitude of ERp rapidly approaches a sharp
peak with a steep slope near the surface of the flap. Consequently, a
surface integration technique is applied to include the effects of this

nonuniform wave.

Basically, the surface integration technique treats multiple inter-
actions which occur in diffraction problems by integrating the diffracted
fields of an interaction wave of a specific order over a surface, to obtain
what corresponds to the subsequent order wedge-diffracted wave. This
method has been successfully used in Refs. 9 and 10 and have been shown
to provide higher accuracies than the wedge diffraction method while pre-

cluding the limitations of nonuniform wave interactions.

Formulating the analysis of the reflected diffraction components
by the surface integration technique, the pertinent parameters are as
The surface of integration is chosen to be at the guide

First, the reflected diffraction fields, ERD» on the
Then the reflected diffraction

shown in Fig. 6.

aperture plane.
surface of integration will be determined.

11
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contributions, ER[D, at the observation plane will be determined using
Green's Second Identity for planar surfaces®! given by

(21) ERD(x, y) = 2 S ERp(0. y") ax? dy',

~00
x'=0

where

Golkr) = "J;I H 2 (kr)

with

=
T !

ol
oL

Noting that r = N(x-x'f + (y-y")*, Eq. (21) may be simplified by the
following relationship

22) 8 Gy(kr) _ [BGo(kr) a(kr)]
ox' 9(kr) ox'
x'=0 x'=0
= -1— Hx(z)(kr) x
4j r

where Hl(z)(kr) is the Hankel function of the second kind of first order.

The reflected diffraction field on the surface of integration S is given
by summing the single and double diffraction contributions. Fory'>0
only edge 1 will contribute and for y' < -a only edge 2 will contribute
while for 0 > y' > -a the reflected diffraction field is zero on S. It may
be recognized that due to the symmetry about the guide axis, identical
field distributions exist for y' > 0 and for y' < -a, thus only the upper
half of S needs to be treated. The singly diffracted field from edge !

is thus given by

(23) ey = - [VB(P':ﬁ-ﬂ) - Ve(p'. B+m] .

13



where the minus sign results from the reflection from the ground plane
and the geometrical quantities are

B = tan'l(%’—f> )

and

p' = ~y'2+ (26)°

The doubly diffracted field from edge 1 is similarly given by

' A
(24) El(z) (Yl) - _ RIG(I) e Jm e p'ta
N2k Np't+a

x I:VB(P'a , 270°-;3,2.0> - VB(P'a ,450°-p,2.0)]
p ta p ta

The total reflected diffraction field on S for y' > 0 is thus given by
t !
(25)  Epply") = By + 2 ()

The symmetry property of the field on S will now be invoked to
simplify Eq. (21). Let

(26) ErD(x: y) = Ef{x,y) + En1(x, y) ,
where
Ef(x, y) = field at P(x, y) by integration over the upper
half of S
* ! 1 aGO
=2 g‘ ErT'(0,y") : dy' ,
0 ox
x'=0

and

14




Eq(x,y) = field at P(x, y) by integration over the lower half

of S
~ - e ! I aGo 1
=2 ERT(0.¥") 37 dy
- x'=0
Then, by symmetry,
(27} Eqx,y) = Ef(x, -y-a) .

Rewriting Eq. (21), the total reflected diffraction contribution to the

scattered field at P{x, y) is thus given by
(28) Exrpix: ¥) = Eq(x, y) + Eflx, -y-a)
°° 3Go 3Go
— f
=2 ‘S(; E'RD(O, y ) ox' + %' dy'
x':o x':O
(x.y) (x, -y-a)

with the integrand given through Eqgs. (22) and (25).

It may be noted in passing that the direct diffraction contributions
obtained by ray techniques in Section A may also be analyzed by surface
integration techniques. However, when interaction waves are uniform
to a good approximation, this more tedious technique is not necessary
and, in fact, can be shown to yield values directly corresponding to the

ray technique.’

C. Reflected Geometrical Optics Contributions

Analogous to the reflected diffraction contribution in the previous
section, the reflected geometrical optics component may be seen to also
reilluminate the flap edges. Conventional wedge diffraction theory again
cannot be applied directly since this component is actually discontinuous
along the surface of the flap. Surface integration techniques together
with superposition is therefore applied to analyze this component.

15



It may be noted here that both the reflected geometrical optics
field, ERG, and the reflected diffracted field, ERD, are discontinuous
at the surface of the flaps. But in order to satisfy the boundary con-
ditions for this polarization their sum, i.e., ERD ¥ ERG, must be
continuous and approach zero along the flap surface.

The geometry involved for ERG is the same as that in Fig. 6
with the surface of integration S at the aperture plane. The reflected
geometrical optics field on S is given by

-e-‘]k(zf) fory' >0 ory' <-a,
(29) ERgly') =
0 for U> y'> -a

where the minus sign arises from the reflection by the ground plane.
By superposition ERG may be resolved as shown in Fig. 7 into two
components: Eg, or the reflected plane wave from a ground plane
without an aperture, and ERg, the negative of the reflection from a
thick wall or strip (reflected geometrical optics strip). The values of
these components on S are given by

GROUND A

GUIDE;;
5 PLANE j

£

S
) (c)

A THICK
A A WAL
n ] / ] ! [}
I ‘|ERG| _ | I_’_ _ /f?] Il Exs]
1T T a4 T
SIS / |
q ' ] j I [} L}
J | Ere A Es Ers
J | FIELD /] I FIELD FIELD
o PLOT | PLOT PLOT
S S
a b

(a) (

Fig. 7. Applications of superposition to the reflected geometrical
optics components from the guide.
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(30) Egly") = - e KD for an v,
and
. e‘]k(Zf) for 02> y'> -a
(31) ERrs(y') =
0 otherwise
with
(32) Erg(v) = Egly') + ERgly’)

Applying Eq. (21) to these components and integrating over S,
it is seen that the plane wave component Eg, will still remain a plane
wave at the observation plane located a distance d' away. The contri-

butions of the reflected geometrical optics strip, ERrg, is seen to be

given by
0 10 ot 8Go 1
(33) ERrs(x,y) = 2 Egrs(V, yh 5 dy
-a '
x'=0
-ik(2f
S0 g ke
=T 2] S\ Hy (kr) — dy
-a

Thus the total contribution from the reflected geometrical optics com-

ponent at P(x, y) is given by

(34) EraG(x,y) = Eg(x,y) + ERs(x,y)
where
(35) Eg(x y) = - e-jk[2f+x]

17




D. Results

From Eqgs. (20), {28), and (34), the total scattered field on the
observation plane may be determined by

(36) Erg = Ep+ ERp * ERrG

Ep+ ErRD t+ EG + ERs
where
ETs = total scattered field,
Ep = direct diffraction contribution from the flaps,

ERD = reflected diffraction contribution from the flaps,

ERG = reflected geometrical optics component from
the guide,
Eg = reflected plane wave from a ground plane

without an aperture, and

ERrg = reflected geometrical optics strip or the negative
of the reflection from a conducting wall.

A computer program in Fortran IV presented in Appendix I has
been written to aid in the calculation of the scattered field. The results
thus obtained are shown in Figs. 8 through 12 as a function of flap length
for various values of f and d'. Figure 8 presents the magnitude of the
scattered field on an observation plane located 3.0\ from the guide
aperture for various flap lengths shorter than U.6\ . It can be seen
that £ = 0.3205\ yields the deepest dip in |ETg|. Figure 9 gives the
same data for f less than one wavelength while Fig. 10 supplies the
cases for which f> 1.0N . It can be seen from these results that optimum
flap lengths, which give the deepest null, occur approximately once every
N/2, an observation in line with physical intuition. These optimum lengths
for relatively short flaps are thus concluded to be { = 0.3205\, 0.8205\,
and 1.3205\ .

Figure 11 presents ,ETS’ for £ = 0.3205\ observed atd' =2.0\,
5.0M, and 10.0N . From this result the dip obtained by the attachment
of the flaps onto the guide aperture can thus be concluded to diminish
as the observation distance d' is increased. At d' = o, of course, the

18
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presence of the aperture should have no effect on the scattered field
which then becomes the reflected plane wave from a ground plane.

The phase of the scattered field is exemplified by the cases for
which f= 0.3205\, and 0.57X, and d' = 3.0 as presented in Fig. 12

E. Equivalent Line Source Representations

The scattered field from the guide due to an incident plane wave
may be seen both theoretically and numerically to be resolvable into

cylindrical component waves. The components obtained in the previous
sections can be treated as follows:

(1) Eg, the reflected plane wave from a ground plane without
an aperture, can be identified as the geometrical optics reflection of
the incident field by the ground plane

(2) Ep, the direct diffraction contribution from the flaps,
actually seems to eminate from edges 1 and 2 and hence can be repre-

sented by an equivalent line source, Vp. located at the guide aperture
center.

(3) ERp + ERS: the sum of the reflected diffraction contribution
from the flaps and the reflected geometrical optics strip component,

as seen by image theory, can be represented by an equivalent line source,
VR located at a distance 2f behind the guide aperture. The modal voltages

of these equivalent sources are then obtained from Eq. (4) as

(37) Vp = ejkd' N2wd" Ep(d', -a/2),
and
(38) vy = A (GRS [Erp(d' -ar2) + Egs(d', -a/2)]

Numerical verification of these equivalent line source representa-
tions for the scattered field is given in Tables I and II for the cases in
which a= 0.76i\, f=0.3205\, andd' =3.0x and 10.0X .
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It may be noted that the equivalent line source modal voltages,
VR and VD, depend only on the amplitude of the incident field (unity
amplitude plane wave assumed incident for Eqs. (37) and (38)) and is
independent of the observation distance d'. This property will be useful
in the reflection coefficient analysis discussed in the next section,
where the same property is assumed for cylindrical wave incidence.
The scattered field components associated with the presence of the
aperture, i.e., those representable by the equivalent line sources
VR and Vp, may be thus expressed in general as

. ~jkr,
(39) Ep=E'Kp &£~ ,
NTo
and
. e"jkro
(40) Egr = ERp + ERs = E' KR —— ,
R RD R N

where E! may be an incident plane wave of arbitrary amplitude and ro
is the observation distance. Ep is the equivalent direct diffraction
contribution and ER is the equivalent reflected contribution from the
aperture. KR and Kp may be regarded as constant scattering coeffi-
cients of a particular guide structure with their values obtainable
through Eqs. (39) and (40) by making the substitutions El = 1 &0,

ro = d', and the values of Ery and ER as exemplied in Tables I or II.
The cases to be considered in the next section are: (1) f = 0.3205\,
a=0.761\; Kp=10.254/108.2°; K =1. 165/20.4°; and (2) f = 0.57\,
a=0.76In; Kp=0. 254 [108.2° ; Krp = 1.337/17.7°.

III. REFLECTION COEFFICIENT ANALYSIS

. In this section the reflection coefficient of the ground-plane-mounted
TEoq1 mode parallel plate waveguide with conducting flaps attached to the
aperture and illuminating a conducting sheet as shown in Fig. 1 is analyzed
in a manner similar to that employed in Ref. 2. By the wedge diffraction
method the reflection coefficient of the waveguide is the superposition of
the free space reflection coefficient, I's, and the reflection coefficient
caused by the presence of the conducting sheet, Iy . The free space
reflection coefficient for this guide structure may be approximated by
the solution for the thin walled case given in Ref. 5. However, ['s in
general is quite small and in practice can be matched out;® therefore,
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it will not be included in the subsequent discussions. The reflection due

to the sheet is analyzed in terms of successive contributions or bounces
which describe the interaction of the fields between the guide and the

sheet.

Formulating the reflection from the sheet in terms of successive

bounces, the first bounce wave is the free space radiation from the
waveguide, Eq. (9), which reflects from the sheet back onto the waveguide.
The first bounce wave then scatters from the guide producing a second
bounce wave which propagates toward the reflecting sheet. The second
bounce wave in turn reflects from the sheet back onto the waveguide

giving rise to a third bounce wave, and so on to higher order bounces.
Each bounce produces a contribution to the reflected TEg mode in the

waveguide.

A. First Bounce

As stated by Eq. (10), calculations show that in the region of the
projected guide cross section the free space wave radiated from the
guide may be represented by an isotropic cylindrical wave from a line
source located at the center of the guide aperture. This and subsequent

SONONCN N

L L 2L ¢ L L L L L L

[e——— a ie!

\\\\\¢\\\\ ®
e

DAY Y YA Y YA YN NY

L L L2 LY

Fig. 14. The reflection coefficient of a TEqy mode ground
plane mounted guide with aperture flaps illumi-
nating a conducting sheet.
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approximations in this report are valid provided the observation distances
are sufficiently removed from the aperture. In general, a rule of thumb
would be to keep the conducting sheet distance d always greater than a,

the guide width, for a <\ .

By image theory the equivalent line source representing the first
bounce wave may thus be seen from Fig. 15a to be located at a distance
2d from the guide aperture and with modal voltage V3 given by

-j w2
41 Vy = - RT@= 0) &— ,
(41) 1 T ) A

where R7(0=0) is the on axis ray from Eq. (9). The minus sign arises
from the reflection by the conducting sheet. The field incident on the guide
from the first bounce equivalent line source is then given by

-jm/2 e-Jk(2d) +j /4

= - Rp(0=0) &
Nk NZw (24d)

o -dk(2d)+j w/4
N27 (2d)

(42) Ef = v,

Using the line source to waveguide coupling expression given in Eq. (12),
the first bounce reflection coefficient is given by

. -jk(24d)
- 4 J
(43) rp=—Y= W ! e i R(0=0) v} &—
vV, 2acos Ay  2nnNk NZd
oy e
Nyr:

B. Second Bounce

The first bounce equivalent line source field scatters from the

guide producing a second bounce wave. It was seen in Section II that

the scattered field from the guide for plane wave incidence may be resolved
into the geometrical optics component and two cylindrical component
waves associated with the presence of the aperture. The aperture com-
ponents of the scattered field resulting from an incident cylindrical

wave, however, depends only on the value of the incident field and is
independent of the source location provided the source is sufficiently
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removed from the guide. For the case of cylindrical wave incidence,

the aperture component of the scattered wave is, therefore, the same as
that for plane wave incidence with the plane wave field equal to the incident
field of the cylindrical wave at the waveguide aperture.

The geometrical optics component of the second bounce wave
reflects from the sheet back onto the waveguide such that it may be
represented by the line source V; located at a distance [2d + (2d +2£)]
from the guide aperture, as shown in Fig. 15b. The aperture components
of the second bounce wave reflect onto the waveguide as described by the
line sources V, and V; in Fig. 15b The values of V, and V, are ob-

tained by equating the radiated fields with those of the aperture components
in Eqs. (39) and (40). Thus

o-Jkrotjm/4 : -jkrg
(44a) ER =V, = - E! KR —— )
2T r, '\)ro
and
-jkrot+jm/4 ) e—jkro
(44b) Ep = V3 < =-E'Kp ——
N2 To '\/ro

where the minus sign again results from the reflection off the conducting
sheet and E' is the incident field of the illuminating line source Vi at
the guide aperture given by Eq. (42). Hence the value of V; and V,

are given, respectively, by

452 L -ik(2d)
{45a V =-Vy KR — ,
N2d
and
-jk(2d)
(45b) Vs = - Vi Kp =
N2d

The corresponding second bounce reflection coefficient is then given by
the modal voltage induced by Vi, V., and V, as shown in Fig. 15b

34




-jk[2d+(2d+2£)] -jk(2d+2f) -jk(24d)
e + Vz e e

(46) I, =C |V —_— vy, ——
NZIFZaT2a) NZd+2f > NZd

C. Multiple Bounces

The generation of the third bounce is similar to the generation of
the second bounce with the line source locations as shown in Fig. 15¢

and modal voltages given by
e—jk[2d+(2d+2f)] o -Jk(2d+2f) e -Jk(2d)
+ + V.

(47) Ve = - KRV, A\
R NZdr(2aiZh) 2 Zaret NG

-jk[2d+(2d+216)] -jk(2d+2£) -jk(24)
(48) Vs = - Kp [V, 2 + vy 2 + V5 2
NZd+(2d+21) NZd+2f NZd

The third bounce reflection coefficient contribution is given by

-jk[2d+2(2d+2£)] -ik[2(2a+20)]
(49) 1"3 = C |Vi £ + V,
N2d+2(2d+21) N2(2d+2f)
-jk[2d+(2d+21)] o -Ik[2d+26]
+ Vv, S D VN S —
NZd¥(2d+21) NZd+2f
- jk(2d)
+ Vj AR
NZd

Generalizing, the n-th bounce wave is given by (2n-1) cylindrical
wave components with sources Vy at [2d+(n-1)(2d+2f)], V, at [(n-1)
(2d+2£)], Vs at [2dH{(n-2)(2d+2f)], V4 at[(n-2)(2d+2f)], ----- V(2n-2) at
[2d+2f], and V(an-1) at[2d] . The sources associated with this bounce

are given by
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jo}
]
—

N2d+(n-m-1)(2d+2{)

(50) V(zn-2)= - KR y Viem-1) e‘jk[2d+(n—m—1)(2d+2f)]
m=1 NZ&H(n-m-1)(2d+ZE)
n-2
+ Z v e’jk[(n'm‘l)(2d+2f)]
(zm)
m=1 N(n-m-1)(2d+2f)
and
n-1 '
(31) Vien-1= - K Z V(em-1) o -Jk[2d+(n-m-1)(2d+21)]
zn-1) = - 2D 2m-1

1

n-2

y v e-jk[(n“m‘l)(2d+2f)]
(2zm)

=1 NTaom-1)(2d+21)

4+
m
The n-th bounce contribution to the reflection coefficient is thus given by

n

(52) I =G Z v .-ik[2d+(n-m)(2d+21)]
n = (zm-1)

NZd+(n-m)(2d+21)

m=1

iy o -Jk[(n-m)(2a+21)]
£ ) Vem

N(n-m)(2d+2f)

m=1

The total reflection coefficient due to the reflecting sheet or plate
is given by

o0
(53) r, = Z T,
n=1
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D. Results

The total reflection coefficient, T due to the conducting sheet,
as given in Eq. (53) , was calculated as a function of the reflector spacing

d for two different flap lengths with the aid of the Fortran IV computer
program presented in Appendix II. The flap lengths chosen were 0.3205\,
an optimum length determined from the scattering program to give the
deepest null, and 0.57\, a non-optimal value. For both cases, a guide
width of 0.761\ was used. The results thus obtained are as presented

in Figs. 16 through 18 with the inclusions of up to 300 bounces.

Figure 16 compares the magnitude of I'y for the two flap lengths
along with the reflection coefficient from the first bounce wave I .
For both cases, the behavior of !I‘p' is quite like that observed in Ref. 2
for a TEM mode ground plane mounted guide (without flaps). [I‘pf is
seen tc oscillate about [} with a period of A/2 in d. At values of d for
which f+d = multiples of \/2, the reflection coefficient is seen to rise
to a sharp peak. This is exactly analogous to the resonance behavior
observed in Ref. 2 for cavity spacings equal to n\ /2, where unity magni-
tude reflection coefficients were observed. From the basic nature of
the problem of a TEp ground-plane-mounted guide without flaps illu-
minating a conducting sheet, it is expected that the reflection coefficient
for this problem will have the same fundamental behavior near critical
values of reflector spacing d = n\;2 as that for the TEM mode. Thus it
is expected that complete reflection will occur at d=n\/2 for the TEq,
mode problem without flaps. The piesence of the flaps eliminates
complete reflection as can be seen from the results in Fig. 16. In
fact, the optimum flap length of 0.3205\X can be seen to yield smaller
oscillations in l“p| than that from f = U.57\, with a significant reduction
in the peak values. For both cases, the peaks remain constant as d
increases, an observation in line with that observed in Ref. 2.

The phase of I', for the two flap lengths is shown in Fig. 17 with

Figures 18a and 18b give the magnitude and phase of

the phase of I'; .
The same maximum

Ip for the f = 0.3205\ case with large values of d.
value is observed in the sharp peak of IFPI atd = 10.1795\ as was ob-
served at smaller values of d. It is believed that the peak values will

not diminish irregardless of the size of d due to the idealized geometry

assumed, namely, infinite ground planes and conducting sheets.

From the data thus obtained, it can be seen that the presence of
the flaps causes a considerable reduction in the amplitude of the oscil-
lations in |Ip From the unity reflection case observed for the guide
without flaps, the new structure is seen to offer lower peaks, especially
at optimum flap lengths. Even though the monotone curve of [y vs d,
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Fig. 17. Phase of Fp.

suitable for reflectometer antennas, was not obtained, this analysis
nevertheless quantitatively predicts the best result that can be obtained

with simple flaps.

IV. CONCLUSIONS

The influence of conducting flaps on the reflection coefficient of
a ground-plane mounted TEy mode parallel-plate waveguide illuminating
a conducting sheet has been analyzed. The backscatter from the guide
structure was obtained by applications of wedge diffraction and surface
integration techniques. The reflection coefficient was then obtained through
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an iterative multiple bounce procedure that describes the interactions
between the guide and the reflector.

This analysis was motivated by the need to improve the design of
reflectometer antennas which are used in plasma diagnostic me.asurements .
Previous analyses and measurements have shown that a r'eflectmg surface
in front of the antenna will usually produce large interactions between t.he
surface and the antenna; this results in large oscillations in the reflection
coefficient as a function of the spacing between the two structures.

The results of this analysis show that the presence of.flaps. at edges
of the antenna aperture can significantly reduce the oscillations in the
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reflection coefficient. Optimum flap lengths can also be determined as
those lengths which produce the greatest reduction in the on-axis back-
scatter from the ground-plane-mounted guide.

Though only thin planar flaps are used in this analysis, extensions
may be easily made to other flap geometries which may yield lower
backscatter and hence a more monotone response.

One possible application of the results from this analysis would
be in reducing radar echo areas of slot arrays.
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APPENDIX 1

The computation of the backscatter from the guide for plane wave
incidence given in Section Il was aided by the Fortran IV computer
program given below. The parameters used in the program are as
shown in Fig. 19. The scattered field contributions are: ETD, the
direct diffraction component; EG, the reflected geometrical optics
strip component; and ETP, the reflected diffraction component.
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Fig. 19. Backscatter from the guide with plane
wave incidence.

44




PEXECUTE PUFFT
SPUFFT 500
C TEQ1 FLAP GUIDE PROBLEM 3Y HYBRID METHOD wWITH SURFACE INTEGRATION
DIMENSION ETDR(OIQO)SETOI(I0OHWETPRIICI)IETPI(100)+BTPRI100)+8TPI (1
200)+EGR(1ITS)ISWEGI(100)
COMPLEX PFT ED1+ED2+CTEMPEDD1EDD2
COMPLEX CTEMP1.CTENMP2
TEMPA=10C340
TEMPD=13CCe0
P1=3e1415927
TP1I=2.0U%P1
PFT=CEXP(CMPLX(0eOa~P1/443))/TPI!
10 READ (5+11) AsFsDNF
11 FORMAT (3F1064415)
IF (NFeEQe2) GO TO 5.C
DA=A/6eC
RD1G==SQRT(2+0)
WRITE (6+13) AsFaD
13 FORMAT (//2CXe3HA= +F10e4s3HF= sF1064+3HD= sF1Ce4//6X¢1HY 12X+ 3HED
212 17X 3HED2 « 16X+ 4HEDDL 9 16X 4HEDD2¢1 77X« 3HETD/)
IF (TEMPDosQeDeANDeTEMPAJEQeA) GO TO 206U
==A/2e0
DO 190 I=1sNF
R1=SQRT(D*D+Y*Y)
ALPH1 =18l eu/PI¥ATANZ(Y D)
R2=SQRT (DH*D+(Y+A)Y ¥ (Y+A) )
ALPHZ2=18CeC/PI*#ATANZ(Y+A4D)
CALL VB (RVB1sUVEL+R1IWALPHI ¢2e0}
TEMP=360eU+ALPHI
CALL VB (RVB2UVBZeR1+TEMPa2e0)
ED1=CMPLX (RVEB1-RVBE2 UV ~UVHE2)
TEMP=-ALPHZ
CALL VB (RVS1+UVB11R2yTEMPe2e10)
TEMP=360eC—-ALPH2
CALL V8 (RVB2+UVBZIRZ2sTEMPsZ2eu)
ED2=CMPLX(RVBI1-RVZ32+UVB1~-UV32)
TEMPI=A¥R1/(A+R]1])
TEMP2=A*R2/(A+R2)
CTEMP=CEXP(CMPLX (2l «TRPI®¥({TEMP1=R1I=-A)))I/SART(R1+A)

Lo
TEMP=3C e i+ALPHI
CALL VB (RVE]1sUVRB1+TEVPI +TEMP«240)
TEMP=27C e CH+ALPHI1
CALL Vi3 (RVB2sUVB2+sTEVMP1«TEMP12e37)
EDD1=RCIG*PFTHCTEMPHCNMNPLX (RVDB1=RVHB2+UVE1=-UVE2)
CTEMP=CEXP (CMPLX(Je s TRIX¥(TEMP2-R2-A)) ) /S5URT(R2+A)
TEMP=9J e U=ALPHZ2
CALL Vi (RVB1 UV e TEMP2TEMP1240)
TEMP =27 e o—ALPH2
CALL VB (RVB21UVS2«TEMP2.TEMP4243)
EDC2=RD1ICH*¥PF THCTIMP*IMPLX(RVEI=-RVL2esUVol=-LVE2)
CTEMP=ZDI1+ED2+4ZDD1+LDD2
ETOR(I)Y=REAL(CTEMP)
ETDI(I)=AIMAG(CTEMP) ;
WRITE (646G) YEU1sEL2+EDD1 +2DD24CTEM?
69 FORMAT (1H +F9e4+10F1Ce6)
Y=Y+DA
103 CONTINUE
2300 CONT INUE
YINC=0DA
Al=-A
A2==0eCOL 1
CALL ZINTG (EGREGIsAsA1sA2WYINCINFaFaD)
DO 610 1=z=1aNF

WRITE (64620) EGROINSEGICL) 45



6060
610

201

205
219

302

305

590

FORMAT (5X+3HEG=+2E15+7)

CONT I NUE

A1=0,uU001

A2=1e0C

CALL ZINTG (ETPRWETPIsAsALl +A2+YINCNFsF WD)

FNF=10Ge0

Al=A2

A2=Al+1e0

CALL ZINTG (BTPR«STPIvAWATI sA2YINCoNFsF D)

DO 210 N=1eNF

ETPRI(N)=ETPR(N)+BTPRI(N)

ETPI(N)Y=ETPI(N)Y+BTRPI (N)

WRITE (642:5) A2+8TPRINIBTPIIN)WETRPRINYETPI(N)
FORMAT (1 +s3HAPZaF1Ce4 45X 4HBTRP=42E]15e Te5Xs4HITP=42E15e7)
CONT INUE

IF (Al+LT«FNF)Y GO TG 201

WRITE (64300)

FORMAT (///76Xs1HY s 14Xv8HE DIRECT+21Xe11HE REFLECTED«21Xs 7THE TUTALZ/
21

Y=z=A/2s0

DO 310 I=1eNF
CTEMP=CMPLX(ETDR(IHI+ETPR(I)SETDI(I)+ETPI(1))

WRITE (6+¢305) YSETOR(IIWETDI (L) «ETPRIINWETRPI(I )« CTEMP
FORMAT (1H +sF9e¢S+6E15e7)

Y=Y+DA

CONT INUE

DO 59U I=]eNF

ETPR(I)=ETPR(IY+EGR(])

ETPICI)=2TRPI(IY+EGI (]

CONT INUE

WRITE (6v4u0)

FORMAT (///71H +6Xs1HY s 15Xe6HACTUAL ¢ 16X 22HEQUIVALENT LINE SOURCEZ)
Y==A/26.:
CTEMPI=CMPLX(ETDR(1)I+ETPR(1)+ZTDI(LI+ETPI (1))

DO 410 I=1NF
CTEMPZ2=CMPLX(ETOR(II+ETPR(IYSETDI(I)+ETPI (1))
EAVM=CABS(CTEMP2)

EAP=18Lel/PI*ATANZ2 (AIMAG(CTENMP2 ) s REAL(CTEMPZ2) )
RTE=SQRT(CH#**¥2+ (Y+A/2C)%%2)

CTEMP2=CTEVYP 1 ¥SARTUID/RTE I ¥CEXP(CMPLX (Ue Oy TRI¥*¥ (D=RTL )))
EQM=CABS(CTEMPR2)

EQP=18Ced/PI*#ATANZ (ATIAAG(CTEMP2 ) +REALICTEMPZ2) )
NRITE (6+44.3) YsEAMIEAPWEQML QP

FORMAT (1H +FQeds4t1Se7)

Y=Y+DA

CONT INUE

WRITZ (647303)

FORMAT (//5X41HY +13X+21HTOTAL SCATTERED FIELD/)
CTEMP==CEXP(CMPLX (D eCa=TRIX*(20%F+)) )

Y==A/2e¢0

DO 710 I=1sNF
CTEMP1=CTEMP+CMPLX (ZETLRUII+ETPR I JLTDICINI+ETRPI(L D))
TEMI=CAA3S(CTEMPL )

TEM2=18ue L/PTH#ATANZ (ATMAGICTEMPL Yo REAL (CTEMPL1)))
WRITE (62795 ) YaTEALTEM2

FORMAT (1H +F9eBe5X 128157

Y=Y+DA

CONT INUFE

WRITE (648.0)

FORMAT (///1H «17rDIRLCT 31?FQACTED//7X.1HY.15X.6HACTUAL-Y6X022HEO

APUTVALENT LIND TOURCL/)
==A/Ze]
CTEMP I =CMPLX(CTORCI DY «ITNTI L)) 46

DO 853 1=1sNF




CTEMPZ2=CMPLX(ETDR(IIETDI (1))
EAM=CABS(CTEMP2)
EAP=180«0/PI*ATAN2 (AIMAG(CTEMPZ2) +REAL(CTEMP2))
RTE=SQRT(D*%¥2+(Y+A/2¢0)%%2)
CTEMP2=CTEMP ] #SQRT(D/RTE ) ¥CEXP(CMPLX (J¢JsTRI*(D-RTE)))
EQM=CABS(CTEMP2)
EQP=18Ce0/PI#ATANZ2 (AIMAG(CTEMP2)YREAL(CTEMP2))
WRITE (6+405) YEAMIEAPEQM4 =QP
Y=Y+DA
850 CONTINUE
CTEMP=CTEMP 1 ¥SGRT (D) *¥CEXP(CMPLX(0s0sTRI*¥D) )
WRITE (6+4855) CTEMP
855 FORMAT ({(SUXe4HXA2=+2E15e7)
WRITE (6+900)
900 FORMAT (///1H +S0HREFLECTED UIFFRACTED PLUS GEOMETRICAL ORPTICS STR
2IP//7TXs1HY s 15X+ 6HACTUAL » 16X+ 22HEQUIVALENT LINE SOURCE/)
Y=—A/2eU
CTEMP1=CMPLX(ETPR(1)+ETPI (1))}
DO 950 1=1«NF
CTEMP2=CMPLX(ETPR(])ETPI (1))
EAM=CABS(CTEMP2)
EAP=180+0/PI*ATAN2(AIMAG(CTEMP2) +REAL(CTEMP2))
RTE=SGRT ((D+2 e OXF ) #¥¥2+(Y+A/2e0) ¥%2)
CTEMP2=CTEMPI*SQRT((D+2.U*F)/RTE)*CEXP(CMPLX(O.OOTPX*(D+200*F—RTE)
2))
EQM=CABS(CTEMPZ2)
EQP=18Ce0/PI*ATAN2 (AIMAG(CTEMP2)+REAL(CTEMP2Y))
WRITE (6+4J5) Y+sEAMJEAPZQMEQP
Y=Y+DA
9503 CONTINUE
CTEMP=CTEMP | #SQRT(D+2+ 0 %F )X CEXP (CMPLX(CeCr TRPIX(D+20%F ) ) )
WRITE (64955) CTEMP
955 FORMAT (50Xe4HXAL1=42E157)
TEMPA=A
TEMPD=D
GO TO 10
S00 CONTINUE

STOPR
END
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SUBROUTINE ZINTG (ZINTGR«ZINTGUIALAL +AZ2+YINCINFeFsD)
DIMENSION ZJUR(1C00)+ZJU(1Lu)eZLR10I)+ZLUCLICIOIISRI1TI)eSUL100)
2ZJOR(10C) +ZJOUCL1ST ) +ERRRE(10C)sERRU 100« ZINTGR(100)+ZINTGU (100
AFFAR(100) «FFBRI1TO)I+FFAUCLITO)«FF3U(100)«FFGR(100)+FFQU(100)
CALL FNCTN (FFARWFFAUSYINC e NFsAlsFaDoA)
CALL FNCTN (FFBR+«FFBUsYINCINF A2 F DA
DO 114 N=1+NF
ZJUR(N)Y=A2-A1
ZJUIN)Y=Ue U
ZH=0e5% (A2-A1)
ZLLRINY=ZH* (FFAR(N)+FF3R(N))
114 ZQU(N)=ZH*(FFAU(N)+FFbU(N))
NN=1
DO 136 L=1+5
DO 118 N=1«NF
SR(N)=0e0
118 SUIN)I=De
DO 124 I=1eNN
F1=FLOAT (1)
Q=(2eU¥F [ =1eD)*ZH+A]
CALL FNCTN (FFQR«FFGQUsYINCINF+sQesFeDsA)
DO 124 N=1«NF
SRINY=SR(N)I+FFQR(N)
SUIN)I=SUIN)I+FFQU (N)
124 CONTINUE
DO 132 N=1s«NF
ZJOR(N)YI=ZJIR(IN)
ZJOU(IN)I=ZJU(N)
ZIURIN)I=ZLR(N)Y+4 ¢ O ZH*SR (N)
ZIJUIN)YZZLU(N)Y+4 ¢ OX¥ZH¥SU(N)
ZLR(N)Y=(ZLR(NY+Z2JUR(NYI/460
ZLUN)I=(ZLUIN)I+ZIUIN) ) /40U
ERRRE(N)=ABS( (ZJRIN)I=ZIOR(N)II/ZJIRIN))
ERRU(INYIZABS( (ZJUINY=ZJIOU(N)I/ZJIU(N))
132 CONTINUE
DO 133 N=1+NF
IF (ERRRZ(N)«GTel1e0t-3) GO TO 135
IF (ERRU(N)sGTeleCE=3) GO TO 135
123 CONTINUE
WRITE (6420) L
20 FORMAT (/3H L=4+12)
GO TC 137
135  NN=2¥NN
ZH=ZH/20\:
136 CONT INUE
WRITE (6433) NWERRRE(N)ERRUN)
33 FORMAT (1H 12HN=~lbobX-QHEQQRE(N)=oE15-7oon5HERRU(N)='E15o7)
137 DO 138 N=1+NF
ZINTGR(N)=ZJRI(N)Y/3eD
138 ZINTGUI(N)Y=ZJUIN)I /30
RETURN
END
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100

150
200

SUBROUTINE FNCTN (FFQReFFGQUsYINCINF 4 YPsFosDeA)
COMPLEX EDIPEDDIP«CTEMP+ERDP«CTEMP] «CTEMP2
DIMENSION FFQR(100)+FFQU(1L0)

P1=341415927

TRI=2.0%P1

IF (YPsLTelsd) GO TO 1230
BETAz180«0/PI*#ATAN2 (YR 26 0%F )
RHOP=SQRT(YP*YP4+4 ¢ O%XF %F )

TEMP=8ETA-180.0

CALL VB (RVB1+UVB1+RHOP«TEMP 4240)
TEMP=BETA+18040

CALL VB (RVB2+UVB2+RHOP«TEMP +240)
EDIP=~-CMPLX(RVB1-RVB2. .UVB]l-UVH2)
TEMP1=RHOP*A/ (RHOP+A)

CTEMP=-14¢41421356*%CMPLX(0e¢70710678+~0e7CT71C678)/TPI*CEXP (CMPLX(Ce0

2. TPI*(TEMP1-RHOP-A)))/SQRT (RHOP+A)
TEMP=270eU—-BETA
CALL VB (RVB1JUVEI+TENMP1 +TEMP124C)
TEMP=450+0~3ETA
CALL VB (RVB2,.,UVB2+TEMP1 +TEMP12e0)
EDD1P==CTEMP*CMPLX(RVE1~RVE2.UVB1-UVB2Z)
ERDP=ED1P+EDD1P
==A/20
DO 50 1=1NF
R1=SQRT(D*D+ (Y=YP)*{(Y=-YP))
R2=SQRT(D*¥D+ (-Y=A=YP)#*#(=~Y=A=YP))
TEMP1=TPI#*R1
CALL HANKEL (RBESLIsYNEUL+TEMP])
TEMP2=TP [ *R2
CALL HANKEL (ZSESL2+YNEU2.sTEMPZ)
CTEMP=TPI*D/CMPLX(0e0s440)
CTEMP1=CTEMP/R1*CMPLX(BESL1+-YNEUI1)
CTEMP2=CTEMP/R2¥CMPLX(BESL24+~YNEU2)
CTEMP=24U* (CTEMP1+CTEMP2 ) *ERCP
FFQR(1)=REAL (CTEMP)
FFQU(I)=AIMAG(CTEMP)
Y=Y+YINC
CONT INUE
GO TO 200

CTEMP=CMPLX(3eC =0 oD ) ¥CEXP (CMPLX(UeD9=TRPI*2eU%F))

Y==A/2e U

DO 150 1=1sNF
R1=SGRT(D*D+(Y=YP)¥ (Y=YP))
TEMP1=TPI*R]

CALL HANKEL (SESL1+YNEUL+TEMPI)
CTEMP1=TPI*D/RI *CTEMP*¥CMPLX(2ESL1+-YNSV1)
FFQR(]1)=REAL (CTEMP1)
FFQU(I)=AIMAG(CTEMP1)

Y=Y+YINC

CONTINUE

CONTINUE

RETURN

END

49



O0000

55

6D

80

J RICHMOND SUSRCGRAM FOR FIRST ORUCER CYLINDRICAL HANKEL FUNCTIONS
FROM SECTION 944 NBS HANDUEOOK OF MATHEMATICAL FUNCTIONS PP 396 7

SUBROUT INE HANKEL (QESLYNEUX)

IF(XeGTe3e) GO TO 60C

R1=X/3.

R2=R1 %R

R4=R2*¥R2

R6=R4 *¥R2
BIzX*(e5-e362499805%RC+e210UI3073¥RA4=-e03954289%RgE)
Y1i= (~e6366198+4+e2212091¥R2+21682709%R4—-1¢3164827%¥R6)/X
IF(R1eLTeLe001)Y GO TO 55

R8=R4*¥R4

R1U=R6%R4

R12=R6#R6
B1=Bl+X*(400443319%¥R5-e0C021761%¥R104eCCO011CY9*¥R12)
Y12Y14{ea3123951%RB—-eC400F76%¥R10+0027873%R12)/X
TEMPzZ2¢0/Z2e¢14158927%¥AL0G(Le5%X)

Y1=Y1+4+TEMP¥*3Z]

GO TO 80

CONTINUE

IF (XeGTe200e0) GO TC 7C

R1=3e/X

R2=R1 *R1

R3=R1*¥R2

R4=R2%¥R2

R5=R3%R2

R6=R3#%R3

SW=SQRT (X)
F=e7978549560+¢0CCT0156%¥R1+e0169966T7*¥R2+eL00171U5*¥R3
2=000249511%R4+400112693%¥Ro~eLul20033%RO
T=2X=2e3961943+¢12499612%R 1+ L0056 ¥R2-eJ0637879%R3+
2e0V07434B%R4+,00079BL4¥RD~400029166%R6E
Bl1=F*COS(T)/SW

Y1=F®*SIN(T)Y/ S

GO TO BC

TEMPI=SGRT(2e¢C/3e1419927/X)
TEMP2=X=2+0%34141Z927/4

B1=TEMP| ¥COS(TEMP2)

Y1=TEMP2¥#SIN(TENMP2)

BESL=81

YNEU=Y1

RETURN

END
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442

443

542

123

SUBROUTINE VB (RVB+WUVBIR«ANGFN)
COMPLEX DEMsTOPsCOMIEXPsUPP] s UNP]
DOUBLE PRECISLION RAG«DPsTSIN
PI=3614159265
TPI=6428318530
ANG=ANG¥P1/18C.C
DEM=CMPLX (D e O s FN¥SART (TP )
TOP=CEXP (CMPLX(QeCa~(TPI*¥R+P1/442)))
COM=TOP/DEM
N=IFIX((PI+ANG)/(2¢ I*FN*¥P1)+0e3)
DN=FLOAT (N)
A=1e0+COS(ANG=2 O¥FN*P] ¥DN )
BOTL=SQRT (TPI*R*A)
EXP=CEXP(CMPLX(JeJsTPI*¥R¥*A))
CALL FRNELS (CeS5+30TL)
C=SQRT(P1/2¢0)%#(J0e5-C)
S= SQRT(PI/2¢C)#(S-0e5)
RAG=(PI+ANG)/ (2+0%FN)
TSIN=DSIN(RAG)
TS=ABS(SNGL(TSIN))
X=10e0
Y=1e O/ X¥%5
IF(TSeGTeY) GO TO 442
COMP=-SGRT (240 ) ¥FN¥SIN(ANG/Z ¢ U=FN*P*DN)
IF(COS(ANG/2e0—-FN*¥P[*¥DN) oL Tele0) COMP==-COMP
GO TO 443
DP=SQRT (A)Y*¥DCOS(RAG)/TSIN
COMP=SNGL (DP)
UPP I =COM¥XEXP*COMP*¥CMPLX(C+S)
N=IFIX((~PI+ANG)/ (2 UXFN*¥P] )+le5)
DN=FLOAT (N)
A=1e04+COS (ANG~2 s O¥FN*PI#DN)
BOTL=SART(TPI*¥R*A)
EXP=CEXP (CMPLX(Ce D TRI¥R¥A) )
CALL FRNELS (CeSeBOTL)
C=SQRT(PI1/2e¢0)%(2e5-C)
S= SAQRT(P[/20)1%(5~0e5)
RAG=(P[-ANG)/ (2 0¥FN)
TSIN=DSIN(RAG)
TS=ABS(SNGL(TSINY)
IF(TSeGTeY) GO TO S42
COMP= SGRT(240)#FN¥SIN(ANG/2eC-FN¥P[*DN)
IF{COS(ANG/2e O-FN#¥F [ *¥DN) el TeCesC) COMP==~COMP
GO TO 123
DP=SQRT(A)Y*¥DCOS(RAG)/TSIN
COMP=5SNGL (DP)
UNP [ =COM*EXP*COMP*CMPLX(C+S)
ANG=ANG*18)eJ/FP1
RVB=REAL (UPPI+UNPI)
UVB=AIMAG (UPPI+UNPI)
RETURN
END
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SUBROUTINE FRNELS(CeS5sXS)
DIMENSION A(12)¢8(12)+CC(12)+4D(12)
A(1)=]1e595769140
A(2)==0eululil7u2
A(3)=—6.8C8568854
A(4)==0000576361
A(5)=64920691902
A(6)Y==Ce016838657
A(7)=-3.053485660C
A(B)=—CelT75752419
A(9)=0.850663781
A(10)=~0e025639041
A(11)==0e1502209603
A(12)=06034404779
B(1)==-00J0000C33
B(2)=24.255387524
B(3)=-0000092810
B(4)==7¢78023204C0
B(5)==0C09520895
B(6)=5075161298
B(7)=-0138341947
B(B)=~1363729124
B(9)=-06403349276
H(10)Y=06.702222016
B(11)=-0e216195929
B(12)=06019547021
CC(1)=0CeD
CC(2)==Leul4333975
CC(31=0ewluu(03936
CCl4)1=0e0UBTTILIS56
CC(5)1=0,010689832
CC(H)==0e009497136
CC(7)=Ce011948839
CC(B8)==0sCO6748873
CC(9)=040022464290
CC(10)=0e002102967
CC(11)=~=Ce0L1217930
CC(12)=0e005233939
D(1)=0e19947114C
D(2)=0UeWluVLO023
D(3)==~0e009351341
D(43y=Ce0CUI23006
D(5)=04004851466
D(6)=0,001903218
D(7)Y=~0e017122914
D(8)=0.029064067
D(9)Y=~0e027928955
D(10)=0.C16497308
D(11)1=~34305598515
D(12)=040208338386
IF(XSelLEeJde0) GO TO 414
X=XS

X=X*X

FR=0e U

F1=0e0

K=13

IF(X~440) 104404¢4C
Y=X/44C

K=K=-1
FR=(FR+A(K) )*Y
FI=(FI1+8(K))*Y
IF({K=2) 30G+30+20
FR=FR+A (1)

FI=F1+483(01) 52




4C
50

60

C=(FR¥COS(XI+FI*SIN(X))I*3QRT (Y)
S=(FR¥SIN(X)=FI¥*¥COS(X))*¥SART (Y)
RETURN
Y=44C/X
K=K-1
FR=(FR+CC(K) ) #*Y
FI=(FI+D(K))*Y
IF(K=2) 60+60.50
FR=FR+CC(1)
FI=FI+D(1)
Cz=0eS+(FR¥COSIX)I+FI#SIN(X) ) *¥SGRT(Y)
STUBH+(FR¥S5IN(X)=FI#CIOS(X) )*¥SURT(Y)
RETURN

==0e0
S==Del
RETURN
END
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APPENDIX II

The Fortran IV computer program used in the computation of the
reflection coefficient is as presented below.

3EXECYUTE PUFFT
SPUFFT 4LC

C
C

i1

13

100
101

93

TEUL FLARP GUIDE REFLECTION COoFFICIENT

FREE SPACE REFLICTION COLFFICIENT NOT INCOUDLD

COMPLEX PFTeRDI«REIIaRDIGIRT e XA ¢ XA24C o CTEMP TP« LTP2+CTR S
DIMENSION VRET7OC)aVI(702)eGAMRI3BIVNeGAM] (35D)

Pl=3el419H927

TRPI=2eu*pP]

PFT=CEXP(CHMPLX(leUs=RP/4e3))/TPI

READ (5+9) A

FORMAT (Flle4)

NRITE (6+11) A

FORMAT (3LXe2HA=Floewd// /7))

ACR=ARSIN(Je3/4)

AT 18BUe URAUR/P]

TEMP=1e0/COSC(PI=AJR)I/2eU)I=1eL/COSI(PI+ADR)I/260)
RDLI=CMPLX (Jel s TEMP)

TEMP=1ew/CO05 0 (1e5%P1~AUR)I/ 260 )=1e0/CO0((1e5#P+AIR) /24D )
RDIG=CMPLX (el TEMP)

CALL VI (RVHIAUVE1IsAW Y e e 2eu)

CALL VB (RV32+UVb2e8e¢27 06l 02el)
ROD1=ROIGHCMPLX(RVE L —RVAE2 e UVE I =UVBS )

RT=RD1+RDD1

WRITE (6e10) RDIWRDIGIRDDI oRT

FORMAT (///71H «5h RULZ42 10 749X e0HROIGZ 4 E [ De 7/ 1X e DHRUO e 2L 156 Ty
2TIXsBHRT =W 2E 1 D67/ 7/7)

C=RT¥PFT/SURTITPII/ (26 #A¥COS (AUK))
CTEMP=-RT/SURT(TPI ) ¥CEXP (CMPLX(Leve—Pl/2eC))

VR1)=REAL (CTEMPR)

VI(I)=AIMAGICTEMP)

READ (De1d1) DeFeXAlvAL? WK

FORMAT (6F1Je6s19)

IF (Kef£Qe0d) GO TO iU

WRITE (6493) DFeaXALl4XAP

FORMAT (//2.Xe2HD=3F 1 0d4e]l CReZr1F=eF12e4/10X0451%e7//)

TD=2eU*D

TOF=2eu* (D+F )

CTPISCEXP(CMPL X (el a=TRI*TDH))/SUSTITE)
CTEMP=CH#CTP1I#CMPLXIV<{1)YeVI(1))

GAMR (1) =REAL (CTEMP)

GAMI (1) =A[MAG(CTEMR)

GM=CA3S(CTLMP)

GP=180eU/PI*#ATANZ (CAYT (1) e GAVK(] Y)Y

CTP2=CMPLXIVR (1 eVI(]1))* TP

CTEZMP=XA1 #CTP2

VRI2)=REAL (CTEMP)

VI(2)=AIMAGICTENP)

CTEMP=XA2*CTP2

VR(3)1=REAL (CTEMP)

VI(3)=AIMAG(CTEVP)

WRITE (64150)

FORMAT (1H «6HI0UMNCr o 13X 1 2HmO00AL VUL TAGE ¢ 17X 22N LFCTION COLFF
PCIENT e OX s GHMAGNT TUDE » 3X e GHPHELCT 7 /)

HRITE (6¢121) VRIL)eWVI{1)eGAMRILI ) eCAMI (1) eSMeGP VR IZ) eV (2)eVR(3)
2VvIe3)

FORMAT (SXelH14GXe 2L 1507 a0X 0t 1 e T e RN eF 1006eF 10e3/11Xe2515e7/11X48
2157

D0 30U N=34K
CTP1=z({Uel e e
CTP2=( .aC s el
K1=N-1

D0 20w M= WK1
D=2 #N =
DUM=FLOAT (N=1=1)

)
)
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CTPI=CTP1+CMDLX(VR(MD)'VI(MD))*CEXP(CMPLX(0.0.—TPI*(TD+DUM*TDF)))/

23QRTITD+DUN*TDF )

200

CONTINUE

K2=N~2

DO 220 M=1.K2

MD=2%M

DUM=FLOAT (N~M-1)
CTp2=CTP2+CMPLX(VR(MD)'VX(MD))*CEXP(CMDLX(OoOo—TPI*(DUM*TDF)))/SOQ

2T (DUM*TDF )

220

250
3Co

350

360
43G0

500

CONTINUE
CTRP3=CTP1+_TP2
CTEMP=C*CTP3

ND=N~1

GAMR(ND)=REAL (CTEMP)
GAMI(ND)=AIMAG(CTCNP)
GM=CABS(CTEMP)
GP=18B0sS/PI*ATAN2(GANMI IND) s SAMRIND) )
CTEMP=XA1%*CTP3

ND1=2%N-2

VRIND1Y=REAL (CTEMP)
VII(ND1)=AIMAG(CTEMP)
CTEMP=XA2%¥CTP3

ND2=2%N-1
VRINDZ2)=REAL(CTEMP)
VI(ND2)=AIMAG(CTEMP)

WRITE (6.253) ND.vR(NDl).VI(NDl)'VR(NDZ).VI(NDZ)»GAMR(ND).GAM[(ND)
231G eGP

FORMAT (1H sIB.EXvEElS-?/l1X'EEI5-7.5X02515o7¢5X'F10.6:Flo-3)
CONTINyE

WRITE (64350)
FORMAT (////3H
2AGNITUDE +8Xy5HPHASE //)

CTEMP=(velUslel)

<3=K-1

DO 400 N=1+sK3
CTEMP=CTE MP+CMPLX (GAMRIN) 2 GAMT (N) )
GM=CAZS(CTEMP)

GP=18C e U/PI*ATANZ (AIMAG(CTEMP) s REAL(CTEMP 3 )
NRITE (60363 ) NeCTEVPIEMAGP

FORMAT (1H s 12e0XeZulDea7esXscllZe7)

CONT INUE

GO TO 100

CONT INUE

STOP

=ND

2 HHBOUNCE 25X 9 28RTOTAL REFLZCTION COSFFICIENT « 9X s SHM
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